The reactions of dialkyl and diarylethoxysilanes with T_{6} silsesquioxane cages X-ray crystallographic studies of the mono- $\mathrm{T}_{6} \mathrm{D}_{1}$ and bis- $\mathrm{T}_{6} \mathrm{D}_{2}$ insertion ring expansion products

Alan R. Bassindale ${ }^{\text {a,* }}$, Zhihua Liu ${ }^{\text {a }}$, David J. Parker ${ }^{\text {a }}$, Peter G. Taylor ${ }^{\text {a,* }}$, Peter N. Horton ${ }^{\text {b }}$, Michael B. Hursthouse ${ }^{\text {b }}$, Mark E. Light ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
${ }^{\mathrm{b}}$ Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Received 1 May 2003; accepted 17 June 2003

Abstract

Successful ring-expanding insertion reactions of T_{6} silsesquioxane cages using dialkyl and diarylethoxysilanes have been performed to give the first reported mixed $T_{6} D_{1}$ and $T_{6} D_{2}$ silsesquioxane cages. The reactions of hexacyclohexylsilsesquioxane (T_{6}) with dialkyl and diaryldiethoxysilanes give predominantly $\mathrm{T}_{6} \mathrm{D}_{2}$ bis-insertion compounds while the reaction of T_{6} with dimethylethoxysilane gives one $T_{6} D_{1}$ mono-insertion product and various $\mathrm{T}_{6} \mathrm{D}_{2}$ bis-insertion products as isolable components. Three of the ring-expanded products are chiral and it has been shown from their X-ray crystal structures that the pairs of enantiomers, formed as racemic mixtures, co-crystallise together. As well as comparing these structures with related ones in the literature, the possible mechanism of their formation is discussed. (C) 2003 Elsevier B.V. All rights reserved.

Keywords: T_{6} silsesquioxane cage; Alkoxysilane; Insertion reaction; Ring opening; Cage expansion; X-ray study

1. Introduction

Silsesquioxanes have long been of importance to those interested in modelling the chemical environment of silica surfaces on a molecular level leading to applications in catalysis, materials and surface chemistry. The challenge of developing synthetic routes to complex cages from simpler, more easily prepared ones is to develop methods of adding individual siloxane units to cages in a controlled fashion.

For example, various groups have taken trisilanol 1 (Scheme 1) and reacted it with trichlorosilanes or functionalised metal complexes to form octasilsesquioxanes (known as T_{8} 's) $\mathbf{2}[1-3]$ and metallasilsesquioxanes 3 [4,5], respectively. The only structural analogue of

[^0]hexasilsesquioxanes 4 (known as T_{6} 's) that has undergone a ring expansion to date is $\mathbf{5}$, which was formed as a by-product in Feher's synthesis of $\mathbf{1}$. Its structure was confirmed from the X-ray crystal structure of its bistriphenyltin analogue 6 [6]. Compound 5 itself has been found to be a useful reagent for complexing with aluminium or titanium to give heterogeneous catalysts and for reacting with siloxanes to form novel silsesquioxane-siloxane co-polymers [7-10].

While centrosymmetric T_{8} 's 2 (where $\mathrm{R}=\mathrm{R}^{\prime}$) [11-16] and to a lesser extent T_{6} 's 4 [12,17] are well-established structural types in the literature, ring expansion reactions that allow them to be used directly as precursors to larger, more complex silsesquioxanes such as 5 have remained unreported until now. In this paper, we report the aqueous tetrabutylammonium fluoride (TBAF)catalysed insertion reactions of dimethylethoxysilane or dialkyl and diaryldiethoxysilanes with hexacyclohexylsilsesquioxane $\left(\mathrm{CyT}_{6}\right)$ 7. We have also examined the

Scheme 1.
crystal structures of the compounds isolated and suggested the mechanism of their formation.

2. Results and discussion

The reaction of 7 with dialkyl or diaryldiethoxysilanes is described in Scheme 2. In each case, a 4:2:1 ratio of dialkoxysilane, 7 and TBAF was used, and the major products were the corresponding bis-insertion, ringexpanded $\mathrm{T}_{6} \mathrm{D}_{2}$ cages $\mathbf{8}, \mathbf{9}$ or $\mathbf{1 0}$ along with a small quantity of octacyclohexylsilsesquioxane $\left(\mathrm{CyT}_{8}\right)(<1 \%)$ 11 in each case.

The formation of $\mathbf{1 1}$ is thought to be due to TBAFinitiated rearrangement of 7 which will be discussed in a future paper [18]. Whilst the isolated yields of major products 8, 9 and $\mathbf{1 0}$ are relatively low in a purely preparative sense, they are very acceptable in comparison with the typical yields reported for other silsesquioxane compounds prepared by similarly nonregioselective routes. The appearance of one D-silicon and three T-silicon peaks in the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectra with an intensity ratio $1: 1: 1: 1$ provided characteristic evidence that the bis-insertion product had been formed in each reaction. This was confirmed by obtaining single crystal X-ray structures as shown in Figs. 1 and 2

Scheme 2.

Fig. 1. ORTEP representation (left) of $\mathbf{8}$ with envelopes drawn at the 50% probability level. Selected bonding distances (\AA) and bond angles (${ }^{\circ}$) are given in Table 1. The simplified schematic structure (right) represents with dashed lines the edges of the former T_{6} cage that the dimethylsiloxy groups have added across. The bridging siloxane O atoms are omitted for clarity with " $\mathrm{Si}-\mathrm{Si}$ " representing the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ moiety.
(Tables 1 and 2). Whilst the structural connectivity of 9 was confirmed by X-ray crystallography, it was not possible to obtain data of a sufficient quality for a full structural refinement of this compound.

Close inspection of the related structures $\mathbf{8 , 9}$ and $\mathbf{1 0}$ reveals that each is enantiomeric and that under our reaction conditions where there is no stereochemical

Fig. 2. ORTEP representation (left) of $\mathbf{1 0}$ with envelopes drawn at the 50% probability level. Selected bonding distances (\AA) and bond angles (${ }^{\circ}$) are given in Table 2. The simplified schematic structure (right) represents with dashed lines the edges of the former T_{6} cage that the diphenylsiloxy groups have added across. The bridging siloxane O atoms are omitted for clarity with " $\mathrm{Si}-\mathrm{Si}$ " representing the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ moiety.

Table 1
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in the crystal of $\mathbf{8}$

Si1-O4	$1.610(5)$
Si1-O5	$1.615(4)$
Si1-O1	1.624(5)
Si1-C1	$1.839(5)$
Si2-O2	$1.609(5)$
Si2-O1	$1.625(5)$
Si2-O6	$1.635(5)$
Si2-C7	1.861(4)
Si5-O10	$1.606(5)$
Si5-O9	$1.610(5)$
Si5-O5	1.631(5)
Si5-C25	$1.847(5)$
Si6-O9	$1.626(5)$
Si6-O6	$1.629(5)$
Si6-C38	1.824(8)
Si6-C37	1.853(8)
O4-Si1-O5	108.4(2)
O4-Si1-O1	110.6(2)
O5-Si1-O1	108.8(2)
O4-Sil-C1	111.6(3)
O5-Sil-C1	107.9(3)
O1-Sil-C1	109.5(2)
O2-Si2-O1	110.1(3)
$\mathrm{O} 2-\mathrm{Si} 2-\mathrm{O} 6$	109.7(3)
$\mathrm{O} 1-\mathrm{Si} 2-\mathrm{O} 6$	107.8(2)
O10-Si5-O9	108.4(3)
O10-Si5-O5	108.9(3)
O9-Si5-O5	109.9(2)
O10-Si5-C25	109.9(3)
O9-Si5-C25	110.5(3)
O5-Si5-C25	109.2(3)
Si1-O1-Si2	152.8(3)
Si2-O2-Si3	143.1(3)
Si5-O9-Si6	152.8(3)
Si5-O10-Si7	145.1(3)
O2-Si2-C7	110.0(2)
$\mathrm{O} 1-\mathrm{Si} 2-\mathrm{C} 7$	107.6(2)
O6-Si2-C7	111.6(2)
O7-Si3-O3	109.0(3)
O7-Si3-O2	108.1(3)
$\mathrm{O} 3-\mathrm{Si} 3-\mathrm{O} 2$	109.1(3)
O7-Si3-C13	113.3(2)
O3-Si3-C13	108.0(3)
O2-Si3-C13	109.2(3)
O9-Si6-O6	109.4(3)
O9-Si6-C38	108.5(3)
O6-Si6-C38	109.5(3)
O9-Si6-C37	108.3(3)
O6-Si6-C37	108.8(3)
C38-Si6-C37	112.4(4)
Si1-O4-Si4	148.2(3)
Si1-O5-Si5	150.7(3)
Si6-O6-Si2	138.1(3)
Si1-O1-Si2	152.8(3)
Si2-O2-Si3	143.1(3)

molecules within their lattices results in each containing a considerable number of intermolecular $\mathrm{H}-\mathrm{H}$ and $\mathrm{C}-$ H close contacts between various positions on the alkyl and aryl substituents of less than the sum of the respective pairs of van der Waals radii.

Table 2
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in the crystal of $\mathbf{1 0}$

O1-Sil	1.618(2)
$\mathrm{O} 1-\mathrm{Si} 2{ }^{\text {i }}$	$1.618(2)$
O2-Si1	1.622(2)
$\mathrm{O} 2-\mathrm{Si} 4{ }^{\text {i }}$	1.632(2)
O3-Sil	$1.619(2)$
O3-Si2	$1.620(2)$
O4-Si3	1.616(2)
O4-Si2	$1.621(2)$
$\mathrm{O} 5-\mathrm{Si}_{3}{ }^{\text {i }}$	$1.609(2)$
O5-Si3	$1.609(2)$
O6-Si4	1.620 (2)
O6-Si3	$1.623(2)$
Sil-C1	1.844(2)
$\mathrm{Si} 2-\mathrm{O} 1^{\text {i }}$	$1.618(2)$
Si2-C7	$1.830(2)$
Si3-C13	1.834(2)
$\mathrm{Si} 4-\mathrm{O} 2{ }^{\text {i }}$	$1.632(2)$
Si4-C19	$1.850(2)$
Si4-C25	1.853(2)
$\mathrm{Si1}-\mathrm{O} 1-\mathrm{Si} 2{ }^{\text {i }}$	157.53(11)
$\mathrm{Si} 1-\mathrm{O} 2-\mathrm{Si} 4{ }^{\text {i }}$	142.28(11)
Si1-O3-Si2	144.39(10)
Si3-O4-Si2	144.61(10)
Si3 ${ }^{\text {i }}$-O5-Si3	156.79(15)
Si4-O6-Si3	147.70(10)
O1-Si1-O3	109.89(8)
O1-Sil-O2	108.98(8)
O3-Si1-O2	108.40(8)
O1-Si1-C1	109.41(9)
O3-Si1-C1	108.01(10)
O2-Si1-C1	112.13(10)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Si} 2-\mathrm{O} 3$	108.81(8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Si} 2-\mathrm{O} 4$	109.87(8)
O3-Si2-O4	108.05(8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Si} 2-\mathrm{C} 7$	110.16(10)
O3-Si2-C7	110.28(10)
O4-Si2-C7	109.64(9)
O5-Si3-O4	109.24(9)
O5-Si3-O6	109.21(6)
O4-Si3-O6	108.02(8)
O5-Si3-C13	108.21(10)
O4-Si3-C13	111.84(9)
O6-Si3-C13	110.29(10)
$\mathrm{O} 6-\mathrm{Si} 4-\mathrm{O} 2^{\text {i }}$	110.64(8)
O6-Si4-C19	105.90(9)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Si} 4-\mathrm{C} 19$	109.77(10)
O6-Si4-C25	110.40(10)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Si} 4-\mathrm{C} 25$	108.76(9)
C19-Si4-C25	111.38(10)

A similar reaction with dimethylethoxysilane, 7 and TBAF in an 8:2:1 molar ratio gave a more complex mixture of compounds that could be separated and characterised by column chromatography (Scheme 4). As well as 11, which was again isolated in less than 1% yield and the expected $\mathrm{T}_{6} \mathrm{D}_{2}$ insertion product $\mathbf{8}(26 \%)$, $\mathrm{T}_{6} \mathrm{D}_{1}$ mono-insertion product $14(11 \%)$ and $\mathrm{T}_{6} \mathrm{D}_{2}$ ortho-bis-insertion product 15 (2%) were also obtained and structurally characterised by their single crystal X-ray structures and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectra. Structure 14 contains five silicon environments and the 1:1:1:2:2 peak intensity

Fig. 3. The X-ray crystal structures of the enantiomers of compound $\mathbf{8}$ which correspond to the structure types $\mathbf{1 2}$ (left) and $\mathbf{1 3}$ (right), respectively. The hydrogen atoms are not shown for clarity.

13

Scheme 3.

Scheme 4.
ratio in the ${ }^{29} \mathrm{Si}$-NMR spectrum obtained was in agreement with the X-ray structure (Fig. 4 and Table 3). The ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum of $\mathbf{1 5}$ showed three peaks corresponding to each of the silicon environments with an intensity ratio $1: 1: 2$ corresponding to the relative numbers of silicons of each type and environment. These data complement the X-ray structure for the compound (Fig. 5 and Table 4). Unlike 8-10, compounds 14 and 15 are achiral. However, each crystal lattice still contains many intermolecular $\mathrm{H}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ close contact distances between the methyl and/or cyclohexyl substituents.

As compounds $\mathbf{8}$ and $\mathbf{1 0}$ are structurally analogous to 6, we can compare data from their crystal structures along with those of $\mathbf{1 4}, 15$ and examples of $\mathrm{T}_{6}, 16$ and
$\mathrm{T}_{8}, \mathbf{1 7}$ cages (Scheme 5 and Table 5) from the literature [12]. By studying the mean $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ and $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ bond angles in the different sized rings that comprise each cage structure a number of patterns in the data are revealed. For our purposes, we have defined an n membered ring within a silsesquioxane cage as one which comprises n ($\mathrm{Si}-\mathrm{O}$) units. Most noticeably the mean $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ bond angle is largely unaffected by changes in structure, substituents at silicon and ring size and maintains a value close to 109°, typical of a tetrahedral silicon environment. The only exception is for three-membered siloxane rings within cages, where ring strain causes a slight mean $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ bond angle reduction. Ring strain also explains the smaller mean $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bond angles in the three-membered siloxane rings compared with the four-membered siloxane rings in various cages.
With the mean $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ bond angles remaining largely constant, we conclude that it is the flexibility of the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ siloxane unit that allows different sized siloxane rings and cages to be readily formed. In Table 5, the mean $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bond angles that have been measured vary by over 24°. For compounds 6, 8, 10 and $\mathbf{1 4}$ which contain both four- and five-membered siloxane rings, both the mean $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ and $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ bond angles are unexpectedly slightly smaller in the fivemembered ring than the four-membered ring when larger angles might be predicted. This may be a result of the greater conformational restrictions inherent in larger five-membered rings that reduces its degrees of freedom and constrains its geometry. Within these four compounds, increases in the mean $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bond angles of the four-membered rings are also reflected in the conjoined five-membered rings as shown in Table 5. While compounds $\mathbf{6}, \mathbf{8}$ and $\mathbf{1 0}$ are structurally comparable with each other, $\mathbf{6}$ has a noticeably larger average $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bond length than $\mathbf{8}$ or $\mathbf{1 0}$. This may be due to the influence of the sterically bulky triphenyltin groups

Fig. 4. ORTEP representation (left) of 14 with envelopes drawn at the 50% probability level. Selected bonding distances ((\AA) and bond angles $\left({ }^{\circ}\right)$ are given in Table 3. The simplified schematic structure (right) represents with a dashed line the edge of the former T_{6} cage that the dimethylsiloxy group has added across. The bridging siloxane O atoms are omitted for clarity with " $\mathrm{Si}-\mathrm{Si}^{\prime}$ " representing the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ moiety.
causing distortion to otherwise preferred cage configuration in the crystal.

Whilst we have not studied the mechanism of these insertion reactions in detail, we envisage that the insertion occurs due to the presence of trace water via a fluoride ion-catalysed nucleophilic attack of water on the alkoxysilane on one corner silicon of the T_{6} cage leading to an edge-opened intermediate (Fig. 6). This intermediate would then intramolecularly ring close by nucleophilic attack with loss of the alkoxide group resulting in the silane group having effectively been inserted across one T_{6} cage edge to give a new $T_{6} D_{1}$ ring-expanded cage. The $\mathrm{T}_{6} \mathrm{D}_{2}$ bis- and ortho-bis-insertion products could then be formed by a further insertion reaction taking place across one of the edges of the remaining three-membered ring in the newly formed $T_{6} D_{1}$ cage by the attack of a further alkoxysilane molecule in a similar way. In Fig. 7, insertion of a second silane group across edge 1 would lead to the ortho-bis product, 15, while insertion across edge 2 or 3 would lead to enantiomer structures $\mathbf{1 2}$ and $\mathbf{1 3}$, respectively, in compounds $\mathbf{8}-\mathbf{1 0}$. In the absence of regiocontrol, edges 2 and 3 are equivalent and a racemic mixture would be obtained.

These novel $\mathrm{T}_{6} \mathrm{D}_{2}$ cages have a total of 10 arms, six with one functionality (based on T_{6}) and four with alternative functionalities (based on dialkoxysilane). Thus, these insertions provide a route to multifunctional cages with specific geometries that we can use to examine the interactions of arms around the cage and use as a scaffold for developing multifunctional catalysts or dendrimers.

3. Conclusions

We have successfully performed ring-expanding insertion reactions of T_{6} silsesquioxane cages using dialkyl and diarylethoxysilanes to give the first reported mixed $\mathrm{T}_{6} \mathrm{D}_{1}$ and $\mathrm{T}_{6} \mathrm{D}_{2}$ silsesquioxane cages. While these reactions often lead to mixed product formation, the various components could be separated by column chromatography and characterised by multinuclear NMR spectroscopy, matrix-assisted laser desorption/ ionisation (MALDI) mass spectroscopy and single crystal X-ray diffraction. The reaction of T_{6} with dialkyl and diaryldiethoxysilanes gives predominantly a $T_{6} D_{2}$ bis-insertion compound while the reaction of T_{6} with dimethylethoxysilane gives one $\mathrm{T}_{6} \mathrm{D}_{1}$ mono- and various $\mathrm{T}_{6} \mathrm{D}_{2}$ bis-insertion compounds as isolable components. We have postulated that the reaction's mechanism is catalysed by aqueous fluoride ion and that it is the trajectory and position of attack of the second alkoxysilane molecule on this $\mathrm{T}_{6} \mathrm{D}_{1}$ intermediate cage that determines which $\mathrm{T}_{6} \mathrm{D}_{2}$ bis-insertion compound is formed on a single molecule level.

Three of our ring-expanded products are chiral and we have shown from their crystal structures that the pairs of enantiomers formed as racemic mixtures cocrystallise together. A comparison of our crystal structure data with comparable literature compounds reveals strong similarities. In particular, we have observed that while the mean $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ cage bond angle remains essentially constant from structure to structure, the mean $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ siloxane bond angle varies considerably. This is probably an important factor in explaining the variety of stable ring, ladder and cage sizes and

Table 3
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in the crystal of $\mathbf{1 4}$

C1-Sil	1.842(3)
C7-Si2	1.845(3)
C8-Si2	1.841(3)
C15-Si4	1.844(3)
C21-Si5	1.843(3)
C33-Si7	1.835(3)
O1-Sil	1.612(2)
O1-Si2	1.629(2)
O2-Si2	1.623(2)
O3-Si4	1.623(2)
O4-Sil	1.618(2)
O4-Si4	$1.625(2)$
O5-Si5	1.638(2)
O6-Si7	1.636(2)
O7-Si5	1.636(2)
O7-Si7	1.638(2)
O4-Si4	$1.625(2)$
O5-Si5	1.638(2)
O6-Si7	1.636(2)
O7-Si5	1.636(2)
Si1-O1-Si2	148.70(13)
Si3-O2-Si2	156.77(14)
Si4-O3-Si3	145.05(13)
Si1-O4-Si4	158.50(13)
Si5-O5-Si6	133.29(13)
Si6-O6-Si7	128.24(12)
Si5-O7-Si7	129.29(12)
Si5-O8-Si1	139.09(12)
Si7-O10-Si4	140.63(13)
O1-Sil-O4	109.04(10)
O1-Sil-O8	108.48(11)
O4-Si1-O8	109.04(10)
O1-Sil-C1	109.63(12)
O4-Si1-C1	110.56(11)
O8-Sil-C1	110.06(11)
O2-Si2-O1	110.36(11)
O2-Si2-C8	108.32(13)
$\mathrm{O} 1-\mathrm{Si} 2-\mathrm{C} 8$	107.83(13)
O2-Si2-C7	108.28(14)
O1-Si2-C7	107.49(13)
C8-Si2-C7	114.55(15)
O3-Si4-O4	108.59(10)
O3-Si4-O10	109.75(10)
O4-Si4-O10	109.13(10)
O3-Si4-C15	109.61(12)
O4-Si4-C15	110.06(11)
O10-Si4-C15	109.68(12)
O8-Si5-O7	109.01(10)
O8-Si5-O5	109.71(10)
O7-Si5-O5	106.50(10)
O8-Si5-C21	108.64(12)
O7-Si5-C21	110.23(12)
O5-Si5-C21	112.69(11)
O10-Si7-O6	108.60(10)
O10-Si7-O7	108.85(10)
O6-Si7-O7	106.53(10)
O10-Si7-C33	111.13(12)
O6-Si7-C33	111.30(11)
O7-Si7-C33	110.28(12)

structures that are known in the silsesquioxane chemistry. We are currently undertaking work on similar
insertion reactions of T_{6} cages involving dialkyl or diarylethoxysilanes with different alkyl and/or aryl groups.

4. Experimental

4.1. General

The TBAF solution in THF used contained 5% of water. Matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry studies were carried out by the University of Southampton using DBH as the matrix and dichloromethane as solvent. All NMR measurements were made on JEOL EX300 or EX400 FT instruments fitted with multinuclear probes. Spectra were recorded at $20^{\circ} \mathrm{C}$ using CDCl_{3} dried over $4 \AA$ molecular sieves as solvent and an external reference of tetramethylsilane. Details of the Xray crystal structure studies also undertaken by the University of Southampton can be found separately in Section 4.2.

4.1.1. Synthesis of bis-insertion compounds $\mathbf{8}-\mathbf{1 0}$ of hexacyclohexylsilsequioxane 7 from dialkyl and diaryldiethoxysilanes

In a typical reaction, $7(0.255 \mathrm{~g}, 0.314 \mathrm{mmol})$, dialkyl or diaryldiethoxysilane $(0.629 \mathrm{mmol})$ and TBAF $(0.157$ $\mathrm{mmol})\left(0.157 \mathrm{~cm}^{3}\right.$ of a 1 M THF solution) were dissolved in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ and stirred at room temperature (r.t.) for 16 h . The solution was then extracted with distilled water $\left(20 \mathrm{~cm}^{3}\right)$ and further with dichloromethane ($200 \mathrm{~cm}^{3}$). The organic layer was dried over anhydrous magnesium sulfate and the solvent removed under vacuum. The resulting white residue was washed with acetone $\left(20 \mathrm{~cm}^{3}\right)$ and purified by column chromatography $\left(\mathrm{SiO}_{2} /\right.$ hexane $)$ to give a crystalline product $\mathbf{8 , 9}$ or $\mathbf{1 0}$. Colourless crystals suitable for X-ray structure analysis were obtained by recrystallisation from a $1: 1$ dichloromethane-acetone solvent mixture.
4.1.1.1. Bis-dimethylsilyl-hexacyclohexylsilsequioxane $T_{6} D_{2}$ insertion compound 8 . Yield: $0.096 \mathrm{~g}(32 \%) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.69$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.21\left(30 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $1.69(30 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.00\left(\mathrm{SiCH}_{3}\right), 0.23$ $\left(\mathrm{SiCH}_{3}\right), 23.10\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 23.19\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 23.43$ $\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 26.25\left(\mathrm{CH}_{2}\right), 26.31\left(\mathrm{CH}_{2}\right), 26.43\left(\mathrm{CH}_{2}\right)$, $26.61\left(\mathrm{CH}_{2}\right), 27.23\left(\mathrm{CH}_{2}\right)$ and $27.28\left(\mathrm{CH}_{2}\right) ; \delta_{\text {Si }}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right):-17.73\left(\mathrm{SiMe}_{2}\right),-65.95(\mathrm{SiCy}),-$ 67.85 (SiCy) and -68.24 (SiCy) (1:1:1:1); m / z (MAL-DI-TOF): $959.52\left[\mathrm{MH}^{+}\right], 960.50,961.48$ and 962.46.

[^1]

Fig. 5. ORTEP representation (left) of 15 with envelopes drawn at the 50% probability level. Selected bonding distances (\AA) and bond angles (${ }^{\circ}$) are given in Table 4. The simplified schematic structure (right) represents with dashed lines the edges of the former T_{6} cage that the dimethylsiloxy groups have added across. The bridging siloxane O atoms are omitted for clarity with " $\mathrm{Si}-\mathrm{Si}$ " representing the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ moiety.
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.51\left(8 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 0.70(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 0.95\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.22\left(30 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of Cy) and $1.70\left(30 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of Cy$) ; \delta_{\mathrm{C}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 6.30\left(\mathrm{SiCH}_{2}\right), 6.75\left(\mathrm{SiCH}_{2}\right), 23.41\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right)$, $23.47\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right)$, $23.89\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right)$, $26.54\left(\mathrm{CH}_{2}\right)$, $26.80\left(\mathrm{CH}_{2}\right), 26.85\left(\mathrm{CH}_{2}\right), 27.48\left(\mathrm{CH}_{2}\right), 27.60\left(\mathrm{CH}_{2}\right)$ and $30.91\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{Si}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-18.10$ $\left(\mathrm{SiEt}_{2}\right),-66.00(\mathrm{SiCy}),-68.03(\mathrm{SiCy})$ and -68.74 (SiCy) (1:1:1:1); m/z (MALDI-TOF): 1036.99 [M+ Na^{+}], 1038.01, 1039.03, 1040.05, 1041.07 and 1042.09.

4.1.1.3. Bis-diphenylsilyl-hexacyclohexylsilsequioxane

 $T_{6} D_{2}$ insertion compound 10. Yield: $0.075 \mathrm{~g}(23 \%) ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.38\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.22(30 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.68\left(30 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.33(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ of Ph$)$ and $7.59(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ of Ph$) ; \delta_{\mathrm{C}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $23.33\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 26.47\left(\mathrm{CH}_{2}\right), 27.42\left(\mathrm{CH}_{2}\right), 127.48$ (CSi of Ph$), 127.58(\mathrm{CH}$ of Ph$), 134.02(\mathrm{CH}$ of Ph$)$ and $134.35(\mathrm{CH}$ of Ph$) ; \delta_{\mathrm{Si}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-46.03$ $\left(\mathrm{SiPh}_{2}\right),-65.71(\mathrm{SiCy}),-67.70(\mathrm{SiCy})$ and -68.00 (SiCy) (1:1:1:1); m/z (MALDI-TOF): 1230.78 [M+ Na^{+}].
4.1.2. Synthesis of mono- and bis-insertion compounds (8,14 and 15) of hexacyclohexylsilsequioxane 7 from dimethylethoxysilane

Compound $7(0.217 \mathrm{~g}, 0.268 \mathrm{mmol})$, dimethylethoxysilane ($0.112 \mathrm{~g}, 1.070 \mathrm{mmol}$) and TBAF (0.134 mmol) ($0.134 \mathrm{~cm}^{3}$ of a 1 M THF solution) were dissolved in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ and stirred at r.t. for 16 h . The solution was then extracted with distilled water (20
cm^{3}) and further with dichloromethane $\left(200 \mathrm{~cm}^{3}\right)$. The organic layer was dried over anhydrous magnesium sulfate and the solvent removed under vacuum. The resulting white residue was washed with acetone (20 cm^{3}) and purified by column chromatography $\left(\mathrm{SiO}_{2} /\right.$ hexane) to give three fractions $\mathbf{8}, \mathbf{1 4}$ and $\mathbf{1 5}$ as white crystalline solids. Colourless crystals of each material suitable for X-ray structure analysis were obtained by recrystallisation from a 1:1 dichloromethane-acetone solvent mixture.
4.1.2.1. Fraction 1 -bis-dimethylsilyl-hexacyclohexylsilsequioxane $T_{6} D_{2}$ insertion compound 8. See Section 4.1.1.1 above.
4.1.2.2. Fraction 2 -mono-dimethylsilyl-hexacyclohexylsilsequioxane $T_{6} D_{1}$ insertion compound 14 . Yield: 0.026 g $(11 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.11$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.76\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.22(30 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right)$ and $1.71\left(30 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $0.00\left(\mathrm{SiCH}_{3}\right), 0.46\left(\mathrm{SiCH}_{3}\right), 22.55\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 23.08$ $\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 23.33\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 26.20\left(\mathrm{CH}_{2}\right), 26.31$ $\left(\mathrm{CH}_{2}\right), 26.36\left(\mathrm{CH}_{2}\right), 26.46\left(\mathrm{CH}_{2}\right), 26.68\left(\mathrm{CH}_{2}\right), 26.73$ $\left(\mathrm{CH}_{2}\right), 26.85\left(\mathrm{CH}_{2}\right), 27.34\left(\mathrm{CH}_{2}\right), 27.38\left(\mathrm{CH}_{2}\right), 27.47$ $\left(\mathrm{CH}_{2}\right), 27.49\left(\mathrm{CH}_{2}\right)$ and $27.58\left(\mathrm{CH}_{2}\right) ; \delta_{\text {Si }}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right):-17.84\left(\mathrm{Me}_{2} \mathrm{Si}\right),-56.18(\mathrm{CySi}$ of threemembered ring), $-58.65(\mathrm{CySi}$ of three-membered ring), -66.76 (CySi of four-membered ring) and 67.30 (CySi of four-membered ring) (1:1:2:1:2); m/z (MALDI-TOF): $907.45\left[\mathrm{M}+\mathrm{Na}^{+}\right]$.

Table 4
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in the crystal of $\mathbf{1 5}$

Molecule 1		Molecule 2	
Si1-O5	1.611(2)	Si9-O12	1.609(2)
Sil-O1	1.616(2)	Si9-O16	$1.615(2)$
Sil-O4	1.621(2)	Si9-O15	1.627(2)
Sil-C1	1.847(3)	Si9-C41	1.848(3)
Si4-O8	1.621(2)	Si12-O14	1.619(2)
Si4-O4	1.622(2)	Si12-O15	$1.620(2)$
Si4-O3	$1.630(2)$	Si12-O19	1.621(2)
Si4-C19	1.844(3)	Si12-C59	1.842(3)
Si5-O5	1.633(2)	Sil3-O16	1.618(2)
Si5-O11	1.638(2)	Sil3-O22	1.627(2)
Si5-C25	1.834(3)	Si13-C65	$1.835(4)$
Si5-C26	1.838(3)	Si13-C66	1.841(4)
Si8-O11	1.623(2)	Si16-O21	1.617(2)
Si8-O8	1.626(2)	Si16-O22	1.620(2)
Si8-O10	1.627(2)	Si16-O19	1.623(2)
Si8-C35	1.843(3)	Si16-C75	1.854(3)
O5-Si1-O1	107.09(11)	O12-Si9-O16	108.21(12)
O5-Si1-O4	110.02(10)	O12-Si9-O15	108.69(11)
O1-Si1-O4	109.41(10)	O16-Si9-O15	109.57(11)
O5-Sil-C1	110.89(13)	O12-Si9-C41	110.52(12)
O1-Sil-Cl	110.55(12)	O16-Si9-C41	109.80(13)
O4-Sil-C1	108.87(12)	O15-Si9-C41	110.00(12)
O8-Si4-O4	108.85(10)	O14-Si12-O15	109.84(10)
O8-Si4-O3	108.74(11)	O14-Si12-O19	108.85(11)
O4-Si4-O3	109.37(10)	O15-Si12-O19	108.89(11)
O8-Si4-C19	110.29(12)	O14-Si12-C59	110.31(12)
O4-Si4-C19	109.42(12)	O15-Si12-C59	107.80(12)
O3-Si4-C19	110.14(12)	O19-Si12-C59	111.13(12)
O5-Si5-O11	108.89(10)	O16-Si13-O22	109.96(11)
O5-Si5-C25	108.85(14)	O16-Si13-C65	108.41(16)
O11-Si5-C25	109.50(12)	O22-Si13-C65	108.79(16)
O5-Si5-C26	109.33(13)	O16-Si13-C66	107.68(16)
O11-Si5-C26	108.87(14)	O22-Si13-C66	109.04(14)
C25-Si5-C26	111.36(16)	C65-Si13-C66	112.91(15)
O11-Si8-O8	109.57(11)	O21-Si16-O22	107.12(11)
O11-Si8-O10	108.31(10)	O21-Si16-O19	110.00(11)
O8-Si8-O10	109.13(11)	O22-Si16-O19	109.89(11)
O11-Si8-C35	109.19(12)	O21-Si16-C75	110.63(13)
O8-Si8-C35	108.43(12)	O22-Si16-C75	110.93(12)
O10-Si8-C35	112.19(13)	O19-Si16-C75	108.27(12)
Si1-O1-Si2	155.91(14)	Si9-O12-Si10	160.49(14)
Si3-O3-Si4	136.14(13)	Si12-O14-Sil1	146.63(13)
Si1-O4-Si4	152.62(14)	Si12-O15-Si9	143.24(14)
Si1-O5-Si5	148.56(13)	Si9-O16-Si13	146.50(14)
Si4-O8-Si8	142.46(12)	Si12-O19-Si16	149.44(13)
Si7-O10-Si8	144.65(13)	Si16-O21-Si15	153.97(14)
Si8-O11-Si5	139.99(13)	Si16-O22-Sil3	149.42(15)

4.1.2.3. Fraction 3-ortho-bis-dimethylsilyl-hexacyclohexylsilsequioxane $T_{6} D_{2}$ insertion compound 15. Yield: $0.005 \mathrm{~g}(2 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.10\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $0.68\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.20\left(30 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and 1.70 $\left(30 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.00\left(\mathrm{SiCH}_{3}\right)$, $0.72\left(\mathrm{SiCH}_{3}\right), 23.03\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 23.77\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right)$, $26.47\left(\mathrm{CH}_{2}\right), 26.63\left(\mathrm{CH}_{2}\right), 26.76\left(\mathrm{CH}_{2}\right), 27.38\left(\mathrm{CH}_{2}\right)$, $27.45\left(\mathrm{CH}_{2}\right)$ and $29.58\left(\mathrm{CH}_{2}\right) ; \delta_{\mathrm{Si}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

Scheme 5.

Table 5
A summary of mean $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ and $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ bond angle data $\left({ }^{\circ}\right)$ arranged by ring size for various silsesquioxane cage compounds characterised by X-ray crystallography (one member $=1 \mathrm{Si}-\mathrm{O}$ unit)

Compound	Bond angle type	Ring size		
		Three-mem- bered	Four-mem- bered	Five-mem- bered
$\mathbf{1 6}$	$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	130.4	134.7	-
	$\mathrm{O}-\mathrm{Si}-\mathrm{O}$	106.4	108.8	-
$\mathbf{1 4}$	$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	130.3	144.6	144.5
	$\mathrm{O}-\mathrm{Si}-\mathrm{O}$	106.5	109.3	109.2
$\mathbf{1 5}$	$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	-	147.4	-
	$\mathrm{O}-\mathrm{Si}-\mathrm{O}$	-	109.3	-
$\mathbf{1 0}$	$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	-	149.0	147.2
	$\mathrm{O}-\mathrm{Si}-\mathrm{O}$	-	109.4	109.1
$\mathbf{1 7}$	$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	-	149.5	-
$\mathbf{8}$	$\mathrm{O}-\mathrm{Si}-\mathrm{O}$	-	108.9	-
$\mathbf{6}$	$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	-	149.8	149.6
	$\mathrm{O}-\mathrm{Si}-\mathrm{O}$	-	109.3	108.8
	$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	-	154.8	151.5
	$\mathrm{O}-\mathrm{Si}-\mathrm{O}$	-	109.1	109.0

$-18.25\left(\mathrm{Me}_{2} \mathrm{Si}\right),-67.50(\mathrm{CySi})$ and $-68.94(\mathrm{CySi})$ (1:1:2); m / z (MALDI-TOF): $981.7\left[\mathrm{M}+\mathrm{Na}^{+}\right]$.

4.2. X-ray crystallography

All structures were measured on a Nonius Kappa CCD diffractometer (ϕ scans and ω scans to fill asymmetric unit or Ewald sphere) using graphite monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.71073 \AA)$. The data collection was performed in a ψ rotation mode. A list of crystal data, data collection, structure solution and refinement parameters is provided in Table 6. The raw intensity data were corrected for Lorentz and polarisation effects as well as absorption correction (SORTAV) [19]. Structure solutions were searched and refined by direct methods (shelxs 97) [20] and difference Fourier analyses (shelxl 97) [21], respectively, based on F^{2}. Atom form factors for neutral atoms were taken from the literature [22]. Second and third row elements were allowed to refine anisotropically with hydrogen atoms assumed in idealised positions riding on their pivot atoms.

Fig. 6. A possible mechanism for silane insertion reactions into T_{6} silsesquioxane cages catalysed by aqueous fluoride ion.

Fig. 7. The regiochemical outcomes of a second edge insertion reaction into $\mathrm{T}_{6} \mathrm{D}_{1}$ mono-insertion silsesquioxane cage compounds.

5. Supplementary material

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication Nos. CCDC 209191-209194. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We would like to thank Dow Corning for their support of this work.

References

[1] F.J. Feher, K.J. Weller, Organometallics 9 (1990) 2638.
[2] E.G. Shockey, A.G. Bolf, P.F. Jones, J.J. Schwab, K.P. Chaffee, T.S. Haddad, J.D. Lichtenhan, Appl. Organomet. Chem. 13 (1999) 311
[3] F.J. Feher, K.J. Weller, J.J. Schwab, Organometallics 14 (1995) 2009.

Table 6
Crystal data, data collection and refinement parameters for compounds $\mathbf{8}, \mathbf{1 0}, \mathbf{1 4}$ and $\mathbf{1 5}$

	8	10	14	15
Formula	$\mathrm{C}_{40} \mathrm{H}_{78} \mathrm{O}_{11} \mathrm{Si}_{8}$	$\mathrm{C}_{60} \mathrm{H}_{86} \mathrm{O}_{11} \mathrm{Si}_{8}$	$\mathrm{C}_{38} \mathrm{H}_{70} \mathrm{O}_{10} \mathrm{Si}_{7}$	$\mathrm{C}_{40} \mathrm{H}_{78} \mathrm{O}_{11} \mathrm{Si}_{8}$
Molecular weight	959.74	1208.01	883.57	959.74
Colour	Colourless	Colourless	Colourless	Colourless
Morphology	Plate	Block	Block	Tablet
Crystal size (mm)	$0.20 \times 0.20 \times 0.05$	$0.20 \times 0.10 \times 0.10$	$0.20 \times 0.10 \times 0.10$	$0.30 \times 0.20 \times 0.05$
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic
Space group	$P \overline{1}$	C2/c	$P 2{ }_{1} / n$	$P \overline{1}$
Unit cell dimensions				
$a(\AA)$	10.1268(5)	19.4021(5)	15.8472(4)	11.203(5)
b (\AA)	$11.4163(5)$	14.5900(5)	$15.9765(4)$	21.240(5)
$c(\AA)$	$22.2125(13)$	24.6258(8)	19.6690(5)	23.033(5)
$\alpha\left({ }^{\circ}\right)$	84.476(2)	90	90	96.415(5)
$\beta\left({ }^{\circ}{ }^{\text {a }}\right.$	88.585(2)	112.995(2)	107.0180(10)	97.912(5)
$\gamma\left({ }^{\circ}{ }^{\circ}\right.$	88.878(2)	90	90	101.753(5)
$V\left(\AA^{3}\right)$	2554.9(2)	6417.1(3)	4761.8(2)	5259.0(3)
Z	2	4	4	4
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.248	1.250	1.232	1.212
$F(000)$	1036	2584	1904	2072
Temperature (K)	120(2)	120(2)	293(2)	120(2)
Reflections collected	18225	17492	24947	58806
Independent reflections	8597	5544	8329	18125
$R_{\text {int }}$	0.1215	0.0614	0.0793	0.0635
θ Range (${ }^{\circ}$)	2.91-25.03	2.93-25.03	2.92-25.03	2.97-25.03
h range	-12, 12	- 23, 21	-18, 18	-13, 12
k range	- 13, 13	-17, 17	-18, 19	- 25, 25
l range	-26, 26	- 29, 29	- 23, 22	-27, 27
Final R indices [$F^{2}>2 \sigma\left(F^{2}\right)$]	$R_{1}=0.0892, w R_{2}=0.2068$	$R_{1}=0.0399, w R_{2}=0.0921$	$R_{1}=0.0462, w R_{2}=0.1054$	$R_{1}=0.0491, w R_{2}=0.1018$
R indices (all data)	$R_{1}=0.2120, w R_{2}=0.2547$	$R_{1}=0.0712, w R_{2}=0.1038$	$R_{1}=0.0856, w R_{2}=0.1189$	$R_{1}=0.0925, w R_{2}=0.1163$
S (goodness-of-fit on F^{2})	1.017	1.037	0.998	1.008
$N_{\text {ref }}$	8597	5544	8329	18125
$N_{\text {par }}$	532	357	498	1071

[4] F.J. Feher, T.A. Budzichowski, Polyhedron 14 (1995) 3239.
[5] M. Crocker, R.H.M. Herold, A.G. Orpen, J. Chem. Soc. Chem. Commun. (1997) 2411.
[6] F.J. Feher, D.A. Newman, J.F. Walzer, J. Am. Chem. Soc. 111 (1989) 1741.
[7] J.D. Lichtenhan, N.Q. Vu, J.A. Carter, J.W. Gilman, F.J. Feher, Macromolecules 26 (1993) 2141.
[8] R.A. Mantz, P.F. Jones, K.P. Chaffee, J.D. Lichtenhan, J.W. Gilman, I.M.K. Ismail, M.J. Burmeister, Chem. Mater. 8 (1996) 1250.
[9] J.W. Gilman, D.S. Schlitzer, J.D. Lichtenhan, J. Appl. Polym. Sci. 60 (1996) 591.
[10] T.S. Haddad, J.D. Lichtenhan, Polym. Prep. 36 (1995) 511.
[11] N.V. Podberezskaya, S.A. Magarill, I.A. Baidina, S.V. Borisov, L.E. Gorsh, J. Struct. Chem. 23 (1982) 422 (English Translation).
[12] M. Unno, A. Suto, K. Takada, H. Matsumoto, Bull. Chem. Soc. Jpn. 73 (2000) 215.
[13] C. Bonhomme, P. Toledano, J. Maquet, J. Livage, L. BonhommeCoury, J. Chem. Soc. Dalton Trans. 9 (1997) 1617.
[14] T.N. Martynova, V.P. Korchkov, P.P. Semyannikov, J. Organomet. Chem. 258 (1983) 277.
[15] F.J. Feher, T.A. Budzichowski, J. Organomet. Chem. 373 (1989) 153.
[16] A.R. Bassindale, Z. Liu, I.A. MacKinnon, P.G. Taylor, Y. Yang, M.E. Light, P.N. Horton, M.B. Hursthouse, J. Chem. Soc. Dalton Trans., in press.
[17] H. Behbehani, B.J. Brisdon, M.F. Mahon, K.C. Molloy, J. Organomet. Chem. 469 (1994) 19.
[18] A.R. Bassindale, P.G. Taylor, Y. Yang, Personal communication.
[19] (a) R.H. Blessing, Acta Crystallogr. A 51 (1995) 33; (b) R.H. Blessing, J. Appl. Crystallogr. 30 (1997) 421.
[20] G.M. Sheldrick, shelxs 97_2: A Program for Crystal Structure Solution, University of Göttingen, FRG, 1998.
[21] G.M. Sheldrick, SHELXL 97_2: A Program for Crystal Structure Refinement, University of Göttingen, FRG, 1998.
[22] International Tables for Crystallography, Tables 4.2.6.8 and 6.1.1.4, Vol. C, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

[^0]: * Corresponding author. Tel.: +44-1908-652512; fax: +44 -1908858327.

 E-mail address: p.g.taylor@open.ac.uk (P.G. Taylor).

[^1]: 4.1.1.2. Bis-diethylsilyl-hexacyclohexylsilsequioxane
 $T_{6} D_{2}$ insertion compound 9 . Yield: $0.043 \mathrm{~g}(17 \%) ; \delta_{\mathrm{H}}(300$

